Ixos®

Radius Plating System
Simply clever!
In the field of hand surgery we not only offer you solutions for standard restorations, but also products for unusual and difficult situations. We therefore regard ourselves as being a true highly specialized partner in all matters relating to hand surgery with our intelligent system solutions.
Ixos®
Radius Plating System
Simply clever!

The most frequent fractures encountered in surgical practice are radius fractures. Based on an extensive body of clinical experience and utilizing new technical possibilities afforded by the ever-advancing technical progress, multidirectional locking radius plates are frequently used nowadays for treating such conditions.

Based on the principle of multidirectional locking plate osteosynthesis, our goal was to treat nearly all types of distal radius fractures with an easy-to-use and clearly structured system.

In fact, Ixos® comes as a comprehensive and user-friendly radius plating system including palmar, dorsal as well as lateral plates. All plates are implanted with state-of-the-art smartDrive® screws. No more than four instruments are required for secure osteosynthesis.
Table of contents

Ixos® – product features                                                                                          6-11

Indications and surgical techniques                                                                 12-13
  ■ Radius fracture                                                                                   14-21
    Treatment with classical palmar plate
  ■ Radius fracture                                                                                   22-29
    Treatment with palmar Watershed Line plate

Product range
  ■ Ixos® implants                                                                                   30-35
  ■ Ixos® instruments                                                                                36-39
  ■ Ixos® storage system                                                                             40-41

Ixos® – “IF Design Award“ winner 2012                                                              42-43
Ixos’ radius plates are available in different designs to match proved treatment concepts. All plates are finished with the Dotize® surface coating. To facilitate identification, all palmar plates have been marked “P”, dorsal plates “D” and dorsolateral plates “DL”.

The latest generation of smartDrive® screws provides both standard and locking screws with double threads for the first time. In addition, all screws are equipped with atraumatic screw tip. Of course, the smartDrive® screws also exhibit the T8 with self-retaining function that has been established for decades. The product range is complemented by locking pins.

The screws/pins are color-coded to facilitate their application:

**Blue**: locking smartDrive® screws and pins

**Gold**: standard smartDrive® screws
Ixos® – simply clever!

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomical plate geometry</td>
<td>No need to bend plates</td>
</tr>
<tr>
<td>Rounded atraumatic plate contour</td>
<td>Best possible embedding in soft tissue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>marLock locking</td>
<td>High degree of locking stability</td>
</tr>
<tr>
<td>Angulation within a range of +/− 15°</td>
<td>Best possible screw positioning</td>
</tr>
<tr>
<td>Several times relockable</td>
<td>Adjustment of screw position and easy metal removal</td>
</tr>
<tr>
<td>Locking even without “heel piece”</td>
<td>Secure use of pins</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15% more fatigue resistance</td>
<td>Slim plate design</td>
</tr>
<tr>
<td>Smooth surface</td>
<td>Delays adherence of tissue and bone ingrowth</td>
</tr>
<tr>
<td>Risk of contact welding is minimized</td>
<td>Easy metal removal</td>
</tr>
</tbody>
</table>

Type II anodization

smartDrive® screws

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atraumatic screw tip</td>
<td>Secure bicortical anchoring with soft tissue preservation</td>
</tr>
<tr>
<td>Atraumatic screw head</td>
<td>Maximum angulation without soft tissue irritations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double, self-tapping thread</td>
<td>Reduces screw-in time by 50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8 with self-retaining function</td>
<td>Easy pick-up, insertion, tightening or removal of the screw</td>
</tr>
</tbody>
</table>
Ixos® components are manufactured according to the latest findings. The 3D contour of the P4 and the P4 Wave can only be achieved by manufacturing them on state-of-the-art, computer-controlled 5-axle machines.

The following plate types are available:

- **P2**: This plate complies with the present industrial standard and complements the system with regard to economic aspects.
- **P4**: Based on the classic palmar treatment concept, the P4 exhibits unprecedented product features in this category for the first time.
- **P4 Wave**: A Watershed Line plate of the latest generation.
- **DL4**: Anatomically pre-shaped plates for the dorsolateral treatment of radius fractures.
- **D4**: The system is complemented by anatomically designed plates for dorsal treatment.
- **PU4**: Additional ulnar plate for the treatment of distal ulnar neck and head fractures.
## A solution for every situation

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>The appropriate plate for every radius fracture even in terms of economic aspects</td>
<td>No second system is required during surgery</td>
</tr>
<tr>
<td>The same instruments for all plates</td>
<td>The same instruments for all plates</td>
</tr>
<tr>
<td>The industrial standard</td>
<td>Familiar technology at a reasonable price</td>
</tr>
<tr>
<td>Watershed Line technology for the first time both in conventional and anatomical design</td>
<td>Multidirectional locking but nevertheless prepositioned screws</td>
</tr>
<tr>
<td>Extra-long plates in conventional design</td>
<td>Integrated support for ideal screw positioning</td>
</tr>
<tr>
<td>Best possible ulnar support in anatomical design</td>
<td>Best possible ulnar support in anatomical design</td>
</tr>
<tr>
<td>Extra-long plates in conventional design</td>
<td>For the treatment of complicated distal radius and shaft fractures</td>
</tr>
<tr>
<td>Plates with small dimensions</td>
<td>Allows dual-plate technology according to Rikli &amp; Regazzoni</td>
</tr>
<tr>
<td>Special ulnar plate</td>
<td>For the treatment of distal ulnar neck and head fractures</td>
</tr>
<tr>
<td>Atraumatic frame plate</td>
<td>Dorsal support but nevertheless minimum soft tissue irritation</td>
</tr>
<tr>
<td>A great number of multidirectional locking boreholes</td>
<td>High flexibility of treatment</td>
</tr>
<tr>
<td></td>
<td>Easy fine adjustment with special bending pliers possible</td>
</tr>
</tbody>
</table>
Feature, Function and Benefit

The KLS Martin Group is committed to developing color-coded instruments that can be handled easily and efficiently. The radius plating system comprises only 4 instruments. In order to comply with the specific requirements of the users, both the screwdriver and the depth gauge can be selected according to the specific personal preferences.

The storage concept already known from HBS2 has been adapted to the special requirements of radius treatment. Besides easy handling, the maintenance requirements were given top priority.
Ixos® instruments and storage

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
</table>
| ■ Color-coded instruments (purple)  
■ smartDrive® screws Ø 2.5 mm  
■ smartDrive® pins Ø 2.0 mm | ■ Easy identification of the respective instruments |
| ■ Single-part instruments with ergonomically shaped silicone handles | ■ Good tactile feedback  
■ No couplings that could lead to confusion  
■ No parts that could get lost |
| ■ Monoaxial drill guide  
■ Polyaxial drill guide | ■ Combined with prepositioned holes, allows short surgery periods  
■ Precise screw positioning in compliance with the maximum possible angulation of +/- 15° |
| ■ Screwdrivers and depth gauges are available in two different design variants | ■ Intuitive working with optimum ergonomics |
| ■ Stainless steel storage tray in honeycomb design combined with high performance plastic | ■ High degree of stability at low weight  
■ Good rinsing results due to large openings  
■ No water residues |
| ■ The instruments are arranged according to their sequence of use during the surgical procedure | ■ For easy and efficient instrumentation |
Step by Step optimal Fixation

Indications
Acute distal radius fractures

- Type A2: Colles’ fracture
- Type A3
- Type B1
- Type B2: Barton’s fracture
- Type B3: Smith’s fracture, Reversed Barton’s fracture
- Type C1
- Type C2
- Type C3
Surgical Techniques

**Radius fracture**
Treatment with classical palmar plate  
Pages 14-21

**Radius fracture**
Treatment with palmar Watershed Line plate  
Pages 22-29
Preoperative planning

In addition to taking standard x-rays in A/P and sagittal planes in neutral position of the wrist, a high-resolution computer tomography should be conducted for the further clarification of intra-articular fractures.

If a central impression of the distal end of the radius is suspected, a carpal arthroscopy can additionally be conducted to clarify concomitant injuries and assess the reduction.

Patient positioning

The patient is placed on the back. The hand that requires surgery is extended on the operating table in full supination of the forearm and under tourniquet control.

A cloth roll can be placed underneath the wrist as a reduction aid.
1. Henry’s palmar approach

A skin incision of 6 - 10 cm length is made on the distal forearm three centimeters proximal to the wrist. The flexor carpi radialis tendon (FCR) is exposed.

2. Exposure of the radius

To obtain access to the pronator quadratus, the incision extends between the FCR and the radius artery.

The pronator quadratus is detached from the lateral edge of the radius to elevate an ulnar-based flap.

Note:
If a post-traumatic sensitivity disorder in the median nerve distribution area or a latent carpal tunnel syndrome is detected, the incision is extended distally and the carpal tunnel is opened.
3. Exposure of the fracture
The fragments and the fracture gap are exposed.

4. Insertion of the plate
The implant is selected according to the fracture pattern and the patient’s anatomy.

The plate is placed centrally above the longitudinal axis in the direction of the distal edge of the radius.

The plate can be temporarily fixed with ø 1.2 mm K-wires.

The first borehole is made into the slotted hole of the shaft using the monodirectional drill guide and the core hole drill (1 purple ring).
5. Determination of the screw length

The correct screw length is determined using the depth gauge.

6. Insertion of the first shaft screw

The plate is fixed in the slotted hole with a golden standard screw.

The correct plate position and the anatomical reduction are checked under x-ray control in both planes.

It has to be ensured that the plate does not project over the Watershed Line; this might cause irritation to the flexor tendons.

If necessary, the result has to be corrected and the plate displaced in longitudinal and/or lateral direction. The screw has to be loosened for this purpose.
7. Insertion of another shaft screw

In order to be able to absorb optimally the forces in the shaft region during reduction, it is advisable to insert another shaft screw, preferably a blue locking screw, prior to the reduction, ensuring that the plate is positioned correctly.

8. Fracture reduction

The tilted fracture is reduced under x-ray control. The bent hand is reduced by applying longitudinal traction combined with dorsal digital compression.

Note:
If required, the fracture reduction can be fixed with K-wires.
9a. Insertion of the distal screws

The first distal borehole is made using the polyaxial drill guide and the core hole drill (1 purple ring). The screw length is determined and a light blue locking screw is inserted.

*Note:*  
The drill guide allows for a multidirectional angulation of $\pm 15^\circ$, so that fixed-angle locking is always ensured.

If the drill guide is not used, the permissible locking angle might be exceeded, which could lead to a lasting impairment of the angle stability.

9b. Insertion of the distal screws

The monoaxial drill guide can be used as an alternative. This takes up the prepositioned angles in the plate.

*Note:*  
When treating a fracture with the P2 plate, the polyaxial drill guide shall always be used for positioning the distal screws.
10. Insertion of additional screws

All additional screws are inserted. For this purpose, drilling and measuring is performed as usual. The screws are positioned in the direction of the dorsal edge of the radius. If possible, the radially positioned screw should be inserted into the radial styloid process.

The subchondral position of the screws is checked under x-ray control.

If required, spongiosa or bone substitute can be inserted through the plate window.

Note:
*The screws in the first row should slightly be tilted proximally; by contrast, the screws in the second row should be tilted distally. The subchondral screw arrangement according to the array principle provides optimum support for both the central region and the dorsal edge of the radius.*

11. Wound closure

The wound is closed in layers. Following the skin closure, a final x-ray image is taken.
12. Postoperative treatment

After completion of the surgery, a forearm splint is applied, which allows active finger movement.
Preoperative planning

In addition to taking standard x-rays in A/P and sagittal planes in neutral position of the wrist, a high-resolution computer tomography should be conducted for the further clarification of intra-articular fractures.

If a central impression of the distal end of the radius is suspected, a carpal arthroscopy can additionally be conducted to clarify concomitant injuries and assess the reduction.

Patient positioning

The patient is placed on the back. The hand that requires surgery is extended on the operating table in full supination of the forearm and under tourniquet control.

A cloth roll can be placed underneath the wrist as a reduction aid.
1. Palmar approach

A skin incision of 6-10 cm length is made on the distal forearm three centimeters proximal to the wrist. The incision is extended distally at acute angle to the rascetta. The flexor carpi radialis tendon (FCR) is exposed.

2. Exposure of the radius

To obtain access to the pronator quadratus, the approach extends between the FCR and the radial artery.

The pronator quadratus is detached from the lateral edge of the radius to elevate an ulnar-based flap.

Note:
*If a post-traumatic sensitivity disorder in the median nerve distribution area or a latent carpal tunnel syndrome is detected, the incision is extended distally and the carpal tunnel is opened.*
3. Exposure of the fracture

The fragments and the fracture gap are exposed.

4. Fracture reduction

The tilted fracture is reduced under x-ray control. The bent hand is reduced by applying longitudinal traction combined with dorsal digital compression.

Note:  
If required, the fracture reduction can be fixed with K-wires.
5. Insertion of the plate

The implant is selected according to the fracture pattern and the patient’s anatomy.

The plate is placed centrally above the longitudinal axis in the direction of the distal edge of the radius.

The plate can be temporarily fixed with Ø 1.2 mm K-wires. The K-wires can be positioned in such a way that the position of the plate to the distal radioulnar joint (DRUJ) as well as to the radiocarpal joint can be checked simultaneously.

The positioning of the plate will be controlled by image converter.

6. Insertion of the distal screws

The first borehole is made into the ulnar plate hole using the polyaxial drill guide and the core hole drill (1 purple ring).

Note:
The drill guide allows for a multidirectional angulation of +/- 15°, so that fixed-angle locking is always ensured.

If the drill guide is not used, the permissible locking angle might be exceeded, which could lead to a lasting impairment of the angle stability.
7. Determination of the screw length

The correct screw length is determined using the depth gauge.

8. Insertion of the distal screws

The monoaxial drill guide can be used as an alternative. This takes up the prepositioned angles in the plate.

Depth gauge
- AO principle
- Single-hand principle

Core hole drill
- AO fitting Ø 2.0 mm

Drill guide
- monoaxial
9. Insertion of the screws

The plate is fixed with a golden standard screw.

All additional screws are inserted at a fixed angle. For this purpose, drilling and measuring is performed as usual.
The screws are positioned in the direction of the dorsal edge of the radius. If possible, the radially positioned screw should be inserted into the radial styloid process.

The subchondral position of the screws is checked under x-ray control. The K-wires can subsequently be removed.

Note:
The screws in the first row should be slightly tilted proximally; by contrast, the screws in the rear rows should be tilted distally. The subchondral screw arrangement according to the array principle provides optimum support for both the central region and the dorsal edge of the radius.

10. Insertion of the first shaft screw

The distal fragment is brought into the final position by pressing the proximal end of the plate in place.

The plate is fixed in the slotted hole with a standard screw. This allows for making fine adjustments to the distal fragment, if necessary.
11. Insertion of the remaining shaft screws

The remaining locking shaft screws are inserted. For this purpose, drilling and measuring is performed as usual.

If required, spongiosa or bone substitute can be inserted through the plate window.

12. Wound closure

The wound is closed in layers. Following the skin closure, a final x-ray is taken.
13. Postoperative treatment

After completion of the surgery, a forearm splint is applied, which allows active finger movement.
Implants **Ixos**®

**Palmar Radius Plates**

**P2**
- Length 43 mm
- Width 23 mm

**Length 52 mm**
- Width 27 mm

**Length 71 mm**
- Width 24.5 mm

---

**Plates**

- 26-912-10-09 right
- 26-912-11-09 left
- 26-912-10-71 right
- 26-912-11-71 left
- $\vartheta = 2.0 \text{ mm}$

**Templates**

- 26-812-10-09 right
- 26-812-11-09 left
- 26-812-12-09 right
- 26-812-13-09 left
- 26-812-14-09 right
- 26-812-15-09 left
- $\vartheta = 2.0 \text{ mm}$
Ixos® P4

4.3° ulnar, 5.7° proximal
3.4° ulnar, 7.1° distal
0.3° ulnar, 5.7° proximal
0.3° radial, 9.9° distal
4.3° radial, 4.3° proximal
8.5° radial, 11.3° distal
8.5° radial, 12.7° distal

Explanation of icons

- Titanium, Dotize®
- Titanium
- Packing unit
- Multidirectional locking
- Plate profile

STERILE: Implants in sterile packaging
- Templates for the safe selection of the sterile packed plate

P4
- Length 43 mm
- Width 23 mm

Length 95 mm
- Width 23 mm

Drill guide block for
- P4 plates with a width of 23 mm

Length 52 mm
- Width 27 mm

Drill guide block for
- P4 plates with a width of 27 mm

26-914-10-09 right
26-914-10-71 right
26-914-10-71 left
26-914-11-09 left
26-914-11-71 left
26-914-12-09 right
26-914-12-71 right
26-914-12-71 left
26-914-13-09 left
26-914-13-71 left
26-914-14-09 right
26-914-15-09 right
26-914-15-09 left

26-814-10-09 right
26-814-10-71 right
26-814-11-09 left
26-814-11-71 left
26-814-12-09 right
26-814-12-71 right
26-814-12-71 left
26-814-13-09 left
26-814-13-71 left

26-950-50-07 right
26-950-51-07 left
26-950-52-07 right
26-950-53-07 left

26-950-50-07 right
26-950-50-07 left
26-950-50-07 left
26-950-50-07 left

= 2.0 mm
= 2.2 mm
= 2.0 mm
= 2.0 mm

Length 43 mm
Width 23 mm
Length 95 mm
Width 23 mm
Length 52 mm
Width 27 mm
Length 95 mm
Width 23 mm
Length 52 mm
Width 27 mm
Implants **Ixos®**

Dorsal and Dorsolateral Radius Plates as well as Ulnar Plate

**P4 Wave**

<table>
<thead>
<tr>
<th>Plates</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-914-20-09 right</td>
<td>43 mm</td>
<td>23 mm</td>
</tr>
<tr>
<td>26-914-21-09 left</td>
<td>43 mm</td>
<td>23 mm</td>
</tr>
<tr>
<td>26-914-20-71 right</td>
<td>52 mm</td>
<td>23 mm</td>
</tr>
<tr>
<td>26-914-21-71 left</td>
<td>52 mm</td>
<td>23 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drill guide block for P4 Wave plates with a width of 23 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-914-22-09 right</td>
</tr>
<tr>
<td>26-914-23-09 left</td>
</tr>
<tr>
<td>26-914-22-71 right</td>
</tr>
<tr>
<td>26-914-23-71 left</td>
</tr>
<tr>
<td>26-914-24-09 right</td>
</tr>
<tr>
<td>26-914-25-09 left</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Templates</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-814-20-09 right</td>
<td>95 mm</td>
<td>23 mm</td>
</tr>
<tr>
<td>26-814-21-09 left</td>
<td>95 mm</td>
<td>23 mm</td>
</tr>
</tbody>
</table>

= 2.0 mm

= 2.2 mm
Ixos® P4 Wave

0.5° ulnar, 8.5° distal
9.9° ulnar, 7.1° proximal
4.3° ulnar, 5.7° proximal
5.7° radial, 8.5° distal
1.4° ulnar, 1.4° distal
9.9° radial, 11.3° distal
9.9° radial, 10.7° distal
11.3° radial, 12.7° distal

D4 Length 60 mm
Width 32 mm

DL4 Straight plate
Length 52 mm
Width 7.5 mm

L plate
Length 43 mm
Width 15 mm

PU4 Ulnar plate
Length 53 mm
Width 16 mm

Explanation of icons

Titanium, Dotize®
Titanium
Packing unit
Multidirectional locking
Plate profile
STERILE: Implants in sterile packaging

Templates for the safe selection of the sterile packed plate

Plates

Templates

26-914-30-09 right
26-914-31-09 left
26-914-30-71 right
26-914-31-71 left
= 1.7 mm

26-814-30-09 right
26-814-31-09 left
26-814-30-71 right
26-814-31-71 left
= 1.7 mm

26-914-40-09 right
26-914-43-09 left
26-914-40-71 right
26-914-43-71 left
= 1.7 mm

26-814-40-09 right
26-814-43-09 left
26-814-40-71 right
26-814-43-71 left
= 1.7 mm

26-914-41-09 right
26-914-41-09 left
26-814-41-09 right
26-814-41-09 left
= 1.7 mm
# Implants  Ixos®

**Screws and Pins**

## Screws

**Multidirectional locking screw**

<table>
<thead>
<tr>
<th>Length</th>
<th>Art. no.</th>
<th>STIMULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm</td>
<td>26-905-08-09</td>
<td>26-905-08-71</td>
</tr>
<tr>
<td>9 mm</td>
<td>26-905-09-09</td>
<td>26-905-09-71</td>
</tr>
<tr>
<td>10 mm</td>
<td>26-905-10-09</td>
<td>26-905-10-71</td>
</tr>
<tr>
<td>11 mm</td>
<td>26-905-11-09</td>
<td>26-905-11-71</td>
</tr>
<tr>
<td>12 mm</td>
<td>26-905-12-09</td>
<td>26-905-12-71</td>
</tr>
<tr>
<td>13 mm</td>
<td>26-905-13-09</td>
<td>26-905-13-71</td>
</tr>
<tr>
<td>14 mm</td>
<td>26-905-14-09</td>
<td>26-905-14-71</td>
</tr>
<tr>
<td>15 mm</td>
<td>26-905-15-09</td>
<td>26-905-15-71</td>
</tr>
<tr>
<td>16 mm</td>
<td>26-905-16-09</td>
<td>26-905-16-71</td>
</tr>
<tr>
<td>17 mm</td>
<td>26-905-17-09</td>
<td>26-905-17-71</td>
</tr>
<tr>
<td>18 mm</td>
<td>26-905-18-09</td>
<td>26-905-18-71</td>
</tr>
<tr>
<td>19 mm</td>
<td>26-905-19-09</td>
<td>26-905-19-71</td>
</tr>
<tr>
<td>20 mm</td>
<td>26-905-20-09</td>
<td>26-905-20-71</td>
</tr>
<tr>
<td>22 mm</td>
<td>26-905-22-09</td>
<td>26-905-22-71</td>
</tr>
<tr>
<td>24 mm</td>
<td>26-905-24-09</td>
<td>26-905-24-71</td>
</tr>
<tr>
<td>26 mm</td>
<td>26-905-26-09</td>
<td>26-905-26-71</td>
</tr>
<tr>
<td>28 mm</td>
<td>26-905-28-09</td>
<td>26-905-28-71</td>
</tr>
<tr>
<td>30 mm</td>
<td>26-905-30-09</td>
<td>26-905-30-71</td>
</tr>
</tbody>
</table>

## Screws

**Standard cortical screw**

<table>
<thead>
<tr>
<th>Length</th>
<th>Art. no.</th>
<th>STIMULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm</td>
<td>26-906-08-09</td>
<td>26-906-08-71</td>
</tr>
<tr>
<td>9 mm</td>
<td>26-906-09-09</td>
<td>26-906-09-71</td>
</tr>
<tr>
<td>10 mm</td>
<td>26-906-10-09</td>
<td>26-906-10-71</td>
</tr>
<tr>
<td>11 mm</td>
<td>26-906-11-09</td>
<td>26-906-11-71</td>
</tr>
<tr>
<td>12 mm</td>
<td>26-906-12-09</td>
<td>26-906-12-71</td>
</tr>
<tr>
<td>13 mm</td>
<td>26-906-13-09</td>
<td>26-906-13-71</td>
</tr>
<tr>
<td>14 mm</td>
<td>26-906-14-09</td>
<td>26-906-14-71</td>
</tr>
<tr>
<td>15 mm</td>
<td>26-906-15-09</td>
<td>26-906-15-71</td>
</tr>
<tr>
<td>16 mm</td>
<td>26-906-16-09</td>
<td>26-906-16-71</td>
</tr>
<tr>
<td>17 mm</td>
<td>26-906-17-09</td>
<td>26-906-17-71</td>
</tr>
<tr>
<td>18 mm</td>
<td>26-906-18-09</td>
<td>26-906-18-71</td>
</tr>
<tr>
<td>19 mm</td>
<td>26-906-19-09</td>
<td>26-906-19-71</td>
</tr>
<tr>
<td>20 mm</td>
<td>26-906-20-09</td>
<td>26-906-20-71</td>
</tr>
<tr>
<td>22 mm</td>
<td>26-906-22-09</td>
<td>26-906-22-71</td>
</tr>
<tr>
<td>24 mm</td>
<td>26-906-24-09</td>
<td>26-906-24-71</td>
</tr>
<tr>
<td>26 mm</td>
<td>26-906-26-09</td>
<td>26-906-26-71</td>
</tr>
<tr>
<td>28 mm</td>
<td>26-906-28-09</td>
<td>26-906-28-71</td>
</tr>
<tr>
<td>30 mm</td>
<td>26-906-30-09</td>
<td>26-906-30-71</td>
</tr>
</tbody>
</table>
Pin
Multidirectional locking pin
Ø 2.0 mm

<table>
<thead>
<tr>
<th>Length</th>
<th>Art. no.</th>
<th>STERILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 mm</td>
<td>26-907-14-09</td>
<td>26-907-14-71</td>
</tr>
<tr>
<td>15 mm</td>
<td>26-907-15-09</td>
<td>26-907-15-71</td>
</tr>
<tr>
<td>16 mm</td>
<td>26-907-16-09</td>
<td>26-907-16-71</td>
</tr>
<tr>
<td>17 mm</td>
<td>26-907-17-09</td>
<td>26-907-17-71</td>
</tr>
<tr>
<td>18 mm</td>
<td>26-907-18-09</td>
<td>26-907-18-71</td>
</tr>
<tr>
<td>19 mm</td>
<td>26-907-19-09</td>
<td>26-907-19-71</td>
</tr>
<tr>
<td>20 mm</td>
<td>26-907-20-09</td>
<td>26-907-20-71</td>
</tr>
<tr>
<td>22 mm</td>
<td>26-907-22-09</td>
<td>26-907-22-71</td>
</tr>
<tr>
<td>24 mm</td>
<td>26-907-24-09</td>
<td>26-907-24-71</td>
</tr>
<tr>
<td>26 mm</td>
<td>26-907-26-09</td>
<td>26-907-26-71</td>
</tr>
<tr>
<td>28 mm</td>
<td>26-907-28-09</td>
<td>26-907-28-71</td>
</tr>
<tr>
<td>30 mm</td>
<td>26-907-30-09</td>
<td>26-907-30-71</td>
</tr>
</tbody>
</table>

Explanation of icons:
- Screw diameter 2.5 mm
- Pin diameter 2.0 mm
- Titanium, Dotize®
- T-Drive
- Packing unit

STERILE Implants in sterile packaging.
Product range: Ixos® instruments

Instruments Ixos®

Standard instruments

26-950-01-07
Drill guide polyaxial
15 cm / 6”

26-950-02-07
Drill guide monoaxial
15 cm / 6”

26-950-20-07
Core hole drill
AO fitting
Ø 2.0 mm
11 cm / 4 ¼”

26-950-06-07
Depth gauge
Single hand principle
13 cm / 5”
Standard instruments

- **26-950-18-07**
  - Screwdriver T8
  - 19 cm / 7 ³⁄₄"

- **26-950-13-07**
  - K-wire dispenser
  - Ø 1.2 mm
  - 17.5 cm / 6 ¾"

- **22-627-12-05**
  - K-wires
  - Ø 1.2 mm
  - 12 cm / 4 ¾"
Instruments Ixos®

Optional instruments

- **26-950-03-07**
  - Drill guide conventional
  - Length: 15 cm / 6"

- **26-950-04-09**
  - Joystick cannulated
  - Size: Ø 2.0 mm
  - Length: 41.5 mm

- **26-950-21-07**
  - Core hole drill AO fitting
  - Size: Ø 2.0 mm
  - Length: 11 cm / 4 ⅝"

- **26-950-25-07**
  - Gliding hole drill AO fitting
  - Size: Ø 2.5 mm
  - Length: 11 cm / 4 ¼"

- **26-950-26-07**
  - Gliding hole drill AO fitting
  - Size: Ø 2.5 mm
  - Length: 11 cm / 4 ¼"

- **26-950-07-04**
  - Screw measuring clip
  - Length and diameter
  - Size: 15 cm / 5 ⅜"
Optional instruments

26-950-05-07  Depth gauge
AO principle
13 cm / 5"

26-950-19-07  Screwdriver T8
rotary
19 cm / 7 ¼"

26-950-16-07  Screwdriver blade
T8/AO
10 cm / 4"

26-950-37-07  Bending pliers
17.5 cm / 6 ¾"
The Ixos® storage system consists of various modules.

All instruments that are absolutely imperative for a surgery are stored separately in the instrument tray.

Optional instruments such as gliding hole drills or bending pliers for the dorsal plates can also be stored separately in the storage cage. Furthermore, there is additional free storage space that can be used individually.

Depending on the version, the circular screw rack can accommodate 180 (single-sided) or 360 screws (double-sided), 5 pieces of each type and length. The double-sided screw rack additionally provides the opportunity to store locking pins. The circular screw rack can be stocked individually.

In addition to the standard inventory of instruments, the Ixos® storage set no. 26-900-10-04 includes a selection of implants that are specifically tailored to the treatment of palmar radius fractures.
**Storage system**

<table>
<thead>
<tr>
<th>Artikelnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-910-33-04</td>
<td>Storage set consisting of:</td>
</tr>
<tr>
<td></td>
<td>lid, instrument insert, storage cage, circular rack for plates, single-sided</td>
</tr>
<tr>
<td>55-910-34-04</td>
<td>Storage set consisting of:</td>
</tr>
<tr>
<td></td>
<td>lid, instrument insert, storage cage, circular rack for plates, double-sided</td>
</tr>
</tbody>
</table>

**Template storage**

<table>
<thead>
<tr>
<th>Artikelnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-910-30-04</td>
<td>Storage set consisting of: Template storage</td>
</tr>
<tr>
<td></td>
<td>ring, right</td>
</tr>
<tr>
<td>55-910-31-04</td>
<td>Storage set consisting of: Template storage</td>
</tr>
<tr>
<td></td>
<td>ring, left</td>
</tr>
</tbody>
</table>

* All articles without content (implants, instruments)
Ixos® clearly impressed the jury

Ixos® symbolizes our new generation of hand and trauma surgery products and the new corporate design of this product line. This particularly applies to the newly designed instruments and the new storage concept. Therefore, we are absolutely delighted that Ixos® has won the IF design award.

The meaning of the term “design” is frequently but incorrectly reduced to the appearance of a product. In fact, the term has a much wider scope, including functional as well as aesthetic properties. Thus, “design” highlights features that give users exactly the added value they are looking for.
Surgical Innovation is our passion.

Among experts, the IF design award is considered the top international competition.

We have won the product design award now the fourth time with in the category medicine / health + care, but the first time with an implant system.

Altogether 1605 firms from more than 48 countries participated in the competition for this highly regarded award with 4322 products. The fact that this year only just about 30% of all applications were considered prize-worthy shows the rigor the 44-member jury applied to its decisions.